The most remote regions of the globe are home of the least disturbed ecosystems, yet they are threatened by air pollution and by climatic change. The Himalayas are one of the most isolated and least explored wilderness areas in the world outside the Polar Regions and it is for this reason that the Tibetan Plateau is often referred to as the Third Pole. Since 1990, an annual limnological survey (including chemistry and biology) has been carried out at two lakes located in the Kumbhu Valley, Nepal, at 5200 and 5400m a.s.l., respectively. Lake water chemistry surveys reveal a persistent increase in the ionic content of the lake water, a trend which appears to be closely linked to increasing temperature. In this study, we also analysed lake sediment cores for historical changes in algal abundance and community composition to evaluate how long-term variations in primary producer communities corresponded to known regional variations in climate systems during the past 3500years. Paleolimnological results support the evidence that the strong variability observed in the chemical data drives the variability in lake production and in the composition of algal assemblages. These variabilities can be related to known features of local climate and the values recorded in the recent years compare well with those recorded during warm periods, such as around 2000 BP, and thus support the idea that this area of the Himalayan Range, influenced by the South Asia monsoon, is closely linked to Northern Hemisphere climate dynamics.
The book contains the scientific papers published by EvK2Cnr researchers in a special issue of Atmospheric Chemistry and Physics, entitled "Atmospheric brown clouds in the Himalaya(http://www.atmos chemphys.org/special_issue162.html). The observations at the Nepal Climate Observatory continuously - Pyramid (NCO-P) took start in March 2006 as part of the Share of EvK2Cnr ABC of UNEP and the project.
A monitoring programme for halogenated climate-altering gases has been established in the frame of the SHARE EV-K2 -CNR project at the Nepal Climate Laboratory – Pyramid in the Himalayan range at the altitude of 5079 m a.s.l. The site is very well located to provide important insights on changes in atmospheric composition in a region that is of great significance for emissions of both anthropogenic and biogenic halogenated compounds. Measurements are performed since March 2006, with grab samples collected on a weekly basis. The first three years of data have been analysed. After the identification of the atmospheric background values for fourteen halocarbons, the frequency of occurrence of pollution events have been compared with the same kind of analysis for data collected at other global background stations. The analysis showed the fully halogenated species, whose production and consumption are regulated under the Montreal Protocol, show a significant occurrence of “above the baseline” values, as a consequence of their current use in the developing countries surrounding the region, meanwhile the hydrogenated gases, more recently introduced into the market, show less frequent spikes. Atmospheric concentration trends have been calculated as well, and they showed a fast increase, ranging from 5.7 to 12.6%, of all the hydrogenated species, and a clear decrease of methyl chloroform(-17.7%).The comparison with time series from other stations has also allowed to derive Meridional gradients, which are absent for long living well mixed species, while for the more reactive species, the gradient in creases inversely with respect to their atmospheric lifetime. The effect of long range transport and of local events on the atmospheric composition at the station has been analysed as well, allowing the identification of relevant source regions the Northern half of the Indian sub-continent. Also, at finer spatial scales, a smaller, local contribution of forest fires from the Khumbu valley has been detected.
"Mountain lakes of high altitude (Himalaya)" in Long Term Ecological Research Network-Italy Location: Lat 27 ° 57'54 "N Long 86 ° 48'40" E; Lake Area (m2): 5.7 103: Average depth(m): unknown; Maximum depth (m): 8.2; Altitude of the lake (m): 5213; Area Region: Himalayas, Khumbu Valley, Mount Everest.
"Mountain lakes of high altitude (Himalaya)" in Long Term Ecological Research Network-Italy Location: Lat 27 ° 57'45 "N Long 86 ° 48'56" E; Lake Area (m2): 16.7 103: Average Depth (m): unknown; Maximum depth (m): 8.2; Altitude of the lake (m asl): 5067; Region: Himalayas, Khumbu Valley, Mount Everest.,
Intense anthropogenic emissions over the Indian sub-continent lead to the formation of layers of particulate pollution that can be transported to the high altitude regions of the Himalaya-Hindu Kush (HKH). Aerosol particles contain a substantial fraction of strongly absorbing material, including black carbon (BC), organic compounds (OC), and dust all of which can contribute to atmospheric warming, in addition to greenhouse gases. Using a 3-year record of continuous measurements of aerosol optical properties, we present a time series of key climate relevant aerosol properties including the aerosol absorption and scattering coefficients as well as the single-scattering albedo (w0). Results of this investigation show substantial seasonal variability of these properties, with long range transport during the pre- and post-monsoon seasons and efficient precipitation scavenging of aerosol particles during the monsoon season. The monthly averaged scattering coefficients range from 0.1 Mm-1 (monsoon) to 20 Mm-1 while the average absorption coefficients range from 0.5 Mm-1 to 3.5 Mm-1. Both have their maximum values during the premonsoon period (April) and reach a minimum during Monsoon (July–August). This leads to dry w0 values from 0.86 (pre-monsoon) to 0.79 (monsoon) seasons. Significant diurnal variability due to valley wind circulation is also reported. Using aerosol optical depth (AOD) measurements,we calculated the resulting direct local radiative forcing due to aerosols for selected air mass cases. We found that the presence of absorbing particulate material can locally induce an additional top of the atmosphere (TOA) forcing of 10 to 20 W m-2 for the first atmospheric layer (500 m above surface). The TOA positive forcing depends on the presence of snow at the surface, and takes place preferentially during episodes of regional pollution occurring on a very regular basis in the Himalayan valleys. Warming of the first atmospheric layer is paralleled by a substantial decrease of the amount of radiation reaching the surface. The surface forcing is estimated to range from -4 to -20 W m-2 for small-scale regional pollution events and large-scale pollution events, respectively. The calculated surface forcing is also very dependent on surface albedo, with maximum values occurring over a snow-covered surface. Overall, this work presents the first estimates of aerosol direct radiative forcing over the high Himalaya based on in-situ aerosol measurements, and results suggest a TOA forcing significantly greater than the IPCC reported values for green house gases.
The possible minimal range of reduction in snow surface albedo due to dry deposition of black carbon (BC) in the pre-monsoon period (March–May) was estimated as a lower bound together with the estimation of its accuracy, based on atmospheric observations at the Nepal Climate Observatory – Pyramid (NCO-P) sited at 5079 m a.s.l. in the Himalayan region. A total BC deposition rate was estimated as 2.89 µg m-2 day -1 providing a total deposition of 266 µg m-2 for March–May at the site, based on a calculation with a minimal deposition velocity of (1.0×10 (-4) m s( -1)) with atmospheric data of equivalent BC concentration. Main BC size at NCO-P site was determined as 103.1–669.8 nm by correlation analyses between equivalent BC concentration and particulate size distributions in the atmosphere. The BC deposition from the size distribution data was also estimated. Itwas found that 8.7% of the estimated dry deposition corresponds to the estimated BC deposition from equivalent BC concentration data. If all the BC is deposited uniformly on the top 2-cm pure snow, the corresponding BC concentration is 26.0–68.2 µg kg-1, assuming snow density variations of 195–512 kg m-3 of Yala Glacier close to NCO-P site. Such a concentration of BC in snow could result in 2.0–5.2% albedo reductions. By assuming these albedo reductions continue throughout the year, and then applying simple numerical experiments with a glacier mass balance model, we estimated reductions would lead to runoff increases of 70–204 mm of water. This runoff is the equivalent of 11.6–33.9% of the annual discharge of a typical Tibetan glacier. Our estimates of BC concentration in snow surface for pre-monsoon season is comparable to those at similar altitudes in the Himalayan region, where glaciers and perpetual snow regions begin, in the vicinity of NCO-P. Our estimates from only BC are likely to represent a lower bound for snow albedo reductions, because we used a fixed slower deposition velocity. In addition, we excluded the effects of atmospheric wind and turbulence, snow aging, dust deposition, and snow albedo feedbacks. This preliminary study represents the first investigation of BC deposition and related albedo on snow, using atmospheric aerosol data observed at the southern slope in the Himalayas.
This paper provides a detailed description of the atmospheric conditions characterizing the high Himalayas, thanks to continuous observations begun in March 2006 at the Nepal Climate Observatory-Pyramid (NCO-P) located at 5079 m a.s.l. on the southern foothills of Mt. Everest, in the framework of ABC UNEP and SHARE-Ev-K2-CNR projects. The work presents a characterization of meteorological conditions and air-mass circulation at NCO-P during the first two years of activity.The mean values of atmospheric pressure, temperature and wind speed recorded at the site were: 551 hPa, -3.0°C, 4.7 m s -1 ,respectively. The highest seasonal values of temperature (1.7 ° C) and relative humidity (94%) were registered during the monsoon season, which was also characterized by thick clouds, present in about 80% of the afternoon hours, and by a frequency of cloud-free sky of less than 10%. The lowest temperature and relative humidity seasonal values were registered during winter, -6.3° C and 22%, respectively, the season being characterised by mainly cloud-free sky conditions and rarehick clouds. The summer monsoon influenced rain precipitation (seasonal mean: 237 mm), while wind was dominated by flows from the bottom of the valley (S-SW) and upper mountain (N-NE). The atmospheric composition at NCO-P has been studied thanks to measurements of black carbon (BC), aerosol scattering coefficient, PM1, coarse particles and ozone.The annual behaviour of the measured parameters shows the highest seasonal values during the premonsoon (BC: 316.9 ng m-3 , PM1: 3.9 µg m-3, scattering coefficient: 11.9 Mm-1 , coarse particles: 0.37 cm-3 and O3: 60.9 ppbv), while the lowest concentrations occurred during the monsoon (BC: 49.6 ng m-3 , PM1: 0.6 µg m-3 , scattering coefficient: 2.2 Mm-1 , and O3: 38.9 ppbv) and, for coarse particles, during the post-monsoon (0.07 cm-3 ). At NCO-P, the synoptic-scale circulation regimes present three principal contributions: Westerly, South-Westerly and Regional, as shown by the analysis of in-situ meteorological parameters and 5-day LAGRANTO back-trajectories. The influence of the brown cloud (AOD>0.4) extending over Indo–Gangetic Plains up to the Himalayan foothills has been evaluated by analysing the in-situ concentrations of the ABC constituents. This analysis revealed that brown cloud hot spots mainly influence the South Himalayas during the pre-monsoon, in the presence of very high levels of atmospheric compounds (BC: 1974.1 ng m-3 , PM1: 23.5 µg m-3, scattering coefficient: 57.7 Mm-1, coarse particles: 0.64 cm-3, O3: 69.2 ppbv, respectively). During this season 20% of the days were characterised by a strong brown cloud influence during the afternoon, leading to a 5-fold increased in the BC and PM1 values, in comparison with seasonal means. Our investigations provide clear evidence that, especially during the pre-monsoon, the southern side of the high Himalayan valleys represent a “direct channel” able to transport brown cloud pollutants up to 5000 m a.s.l., where the pristine atmospheric composition can be strongly influenced.
This paper provides a detailed description of the atmospheric conditions characterizing the high Himalayas, thanks to continuous observations begun in March 2006 at the Nepal Climate Observatory-Pyramid (NCO-P) located at 5079 m a.s.l. on the southern foothills of Mt. Everest, in the framework of ABC UNEP and SHARE-Ev-K2-CNR projects. The work presents a characterization of meteorological conditions and air-mass circulation at NCO-P during the first two years of activity.The mean values of atmospheric pressure, temperature and wind speed recorded at the site were: 551 hPa, -3.0°C, 4.7 m s -1 ,respectively. The highest seasonal values of temperature (1.7 ° C) and relative humidity (94%) were registered during the monsoon season, which was also characterized by thick clouds, present in about 80% of the afternoon hours, and by a frequency of cloud-free sky of less than 10%. The lowest temperature and relative humidity seasonal values were registered during winter, -6.3°C and 22%, respectively, the season being characterised by mainly cloud-free sky conditions and rarehick clouds. The summer monsoon influenced rain precipitation (seasonal mean: 237 mm), while wind was dominated by flows from the bottom of the valley (S-SW) and upper mountain (N-NE).The atmospheric composition at NCO-P has been studied thanks to measurements of black carbon (BC),aerosol scattering coefficient, PM1, coarse particles and ozone The annual behaviour of the measured parameters shows the highest seasonal values during the premonsoon (BC: 316.9 ng m-3,PM1: 3.9 µg m-3, scattering coeffcient: 11.9 Mm-1 , coarse particles: 0.37 cm-3 and O3: 60.9 ppbv), while the lowest concentrations occurred during the monsoon (BC: 49.6 ng m-3, PM1: 0.6 µg m-3 , scattering coefficient: 2.2 Mm-1 , and O3: 38.9 ppbv) and, for coarse particles, during the post-monsoon (0.07 cm-3 ). At NCO-P, the synoptic-scale circulation regimes present three principal contributions: Westerly, South Westerly and Regional, as shown by the analysis of in-situ meteorological parameters and 5-day LAGRANTO back trajectories. The influence of the brown cloud (AOD>0.4) extending over Indo Gangetic Plains up to the Himalayan foothills has been evaluated by analysing the in-situ concentrations of the ABC constituents. This analysis revealed that brown cloud hot spots mainly influence the South Himalayas during the pre monsoon, in the presence of very high levels of atmospheric compounds (BC: 1974.1 ng m-3 , PM1: 23.5 µg m-3,scattering coefficient: 57.7 Mm-1,coarse particles: 0.64 cm-3, O3: 69.2 ppbv, respectively). During this season 20% of the days were characterised by a strong brown cloud influence during the afternoon, leading to a 5-fold increased in the BC and PM1 values, in comparison with seasonal means. Our investigations provide clear evidence that, especially during the pre-monsoon, the southern side of the high Himalayan valleys represent a “direct channel” able to transport brown cloud pollutants up to 5000 m a.s.l., where the pristine atmospheric composition can be strongly influenced.
In this work we present the new ABC-Pyramid Atmospheric Research Observatory (Nepal, 27.95 N, 86.82 E) located in the Himalayas, specifically in the Khumbu valley at 5079 m a.s.l. This measurement station has been set-up with the aim of investigating natural and human-induced environmental changes at different scales (local, regional and global). After an accurate instrumental set-up at ISAC-CNR in Bologna (Italy) in autumn 2005, the ABC-Pyramid Observatory for aerosol (physical, chemical and optical properties) and trace gas measurements (ozone and climate altering halocarbons) was installed in the high Khumbu valley in February 2006. Since March 2006, continuous measurements of aerosol particles (optical and physical properties), ozone (O3) and meteorological parameters as well as weekly samplings of particulate matter (for chemical analyses) and grab air samples for the determination of 27 halocarbons, have been carried out. These measurements provide data on the typical atmospheric composition of the Himalayan area between India and China and make investigations of the principal differences and similarities between the monsoon and pre-monsoon seasons possible. The study is carried out within the framework of the Ev-K2-CNR “SHARE-Asia” (Stations at High Altitude for Research on the Environment in Asia) and UNEP—“ABC” (Atmospheric Brown Clouds) projects. With the name of “Nepal Climate Observatory—Pyramid” the station is now part of the Observatory program of the ABC project.