Sun photometer ( Cimel CE-318) measurements of the direct (collimated) solar radiation provide information to calculate the columnar aerosol optical depth (AOD). AOD can be used to compute columnar water vapor (Precipitable Water) and estimate the aerosol size using the Angstrom parameter relationship. Sunphotometer from March 2006 provides a characterization of aerosol optical and microphysical properties of the air column above the station. It is an automatic sun-tracking and sky radiometer for measuring the aerosol optical depth at 8 wavelengths between 340 and 1020 nm.
At the end of March 2006 a Cimel CE-318 sunphotometer was installed at The Nepal Climate Observatory - Pyramid (NCO-P) within the framework of the Aerosol Robotic Network, AERONET (http://aeronet.gsfc.nasa.gov, EvK2-CNR site). It provides a characterization of aerosol optical and microphysical properties of the air column above the station.
At the end of March 2006 a Cimel CE-318 sunphotometer was installed at the Nepal Climate Observatory - Pyramid (NCO-P) within the framework of the Aerosol Robotic Network, AERONET (http://aeronet.gsfc.nasa.gov, EvK2-CNR site). It provides a characterization of aerosol optical and microphysical properties of the air column above the station.
This study presents two years of continuous observations of physical aerosol properties at the GAW-WMO global station "Nepal Climate Observatory – Pyramid" (NCO-P, 27°57' N, 86°48' E), sited at 5079 m a.s.l. in the high Himalayan Khumbu Valley (Nepal). Measurements of aerosol number size distribution, aerosol optical depth (AOD) and single scattering albedo (SSA) are analysed from March 2006 to February 2008. By studying the temporal variations of coarse (1 µm < Dp < 10 µm) particle number concentration, 53 mineral Dust Transport Events (DTEs) are identified, accounting for 22.2% of the analysed data-set. Such events occurred prevalently during pre-monsoon (for 30.6% of the period) and winter (22.1%) seasons. However, uncommon cases of mineral dust transport are observed even during the monsoon season. The main sources of mineral dust reaching NCO-P are identified in the arid regions not far from the measurement site, i.e. from Tibetan Plateau, and Lot-Thar deserts, which account for 52% of the dust transport days. Moreover, a non-negligible contribution can be attributed to the Arabian Peninsula (17%) and the Indo-Gangetic Plains (16%), as indicated by three dimensional (3-D) back-trajectory analyses performed with LAGRANTO model. The observed DTEs lead to significant enhancements in the coarse aerosol number concentration (+513%) and coarse aerosol mass (+655%), as compared with average values observed in "dust-free" conditions ( 0.05 ± 0.11 cm(-3) and 3.4 ± 3.7 µg m(-3), respectively). During DTEs, SSA is higher (0.84–0.89) than on "dust-free" days (0.75–0.83), confirming the importance of this class of events as a driver of the radiative features of the regional Himalayan climate. Considering the dust events, a significant seasonal AOD increase (+37.5%) is observed in the post-monsoon, whereas lower increase (less than +11.1%) characterises the pre-monsoon and winter seasons confirming the influence of synoptic-scale mineral dust transports on the aerosol optical properties observed at NCO-P.
A 5 weeks experiment (1 June to 5 July 2000) took place at a mountain site, Mt Cimone (44º11' N, 10º42' E, 2165 m a.s.l.), that is representative of Southern Europe background conditions. During this field campaign, a comprehensive characterisation of trace gases and radicals, involved in the production and destruction of O3, as well as of chemical, physical and optical properties of the aerosol was done. Atmospheric gases and aerosols were measured continuously over the 5 weeks period, in order to characterize their background concentrations in the free troposphere and their respective differences in air containing dust aerosols advected from Africa. Due to its location and elevation, Mt Cimone gets free tropospheric air both from the Mediterranean and from the Po Valley, which makes it an invaluable place to study gas/aerosol interactions. A global chemical model coupled to a GCM was used to simulate based upon ECMWF reanalysis the ozone over the region during the period of the field study. The heterogeneous reactions of O3, N2O5, HNO3 and NO3 were accounted for. We estimate that during the field campaign, the effect of heterogeous reactions was to reduce by 8 to 10% the ozone concentration at MTC in cases when air had passed over the Mediterranean Sea. When air was coming from the Atlantic or continental Europe, the reduction of ozone is still 4%. This reduction is mostly due to the large uptake of HNO3 and is the the topic of ongoing work to assess how it affects the global cycle of O3 and the global nitrogen budget.
The Himalayan–Karakoram range is located in one of the most densely populated and very rapidly developing world areas. Monitoring of atmospheric composition in this area can play a relevant role in evaluating the background conditions of the free troposphere and quantifying the pollution present at high altitudes, as well as in studying regional and long-range transport phenomena. Due to technical and logistic difficulties in carrying out measurements at high altitude in the Himalaya, no systematic observations of atmospheric constituents are available for this area. Thus, a new measurement station in such a region represents a unique source of data, able to make up for the prior lack of this information. For these reasons, in the framework of the SHARE-Asia and ABC projects, a remote monitoring station, the ABC-Pyramid Laboratory, will be installed in the Khumbu valley near Mt. Everst at 5079 m a.s.l. Continuous in situ measurements of chemical, physical and optical properties of aerosol, surface ozone concentration, as well as non-continuous measurements of halocarbons and other greenhouse-gas concentrations will be carried out. This monitoring station was projected, realised and tested in Bologna at CNR-ISAC Institute during autumn 2005. It was designed to be controlled by remote login and to operate for the long-term in extremely adverse weather conditions. This station represents an ideal place for studying regional and long-range air mass transport, due to natural and human processes. Precious 5-day forecast information about air-masses circulation at the ABC-Pyramid site will be supplied daily by Lagrangian backward trajectories, including suitable forecasts of stratosphere-troposphere exchange phenomena.