From 1 - 9 / 9
  • Categories      

    The CNR1 net radiometer by Kipp & Zonen is for applications requiring research-grade performance. The radiometer measures the energy balance between incoming short-wave and long-wave IR radiation versus surface-reflected short-wave and outgoing long-wave IR radiation. The CNR1 consists of a pyranometer and pyrgeometer pair that faces upward and a complementary pair that faces downward. The pyranometers and pyrgeometers measure short-wave and far infrared radiation, respectively. The CNR1 also includes an RTD to measure the radiometer’s internal temperature and a heater that can be used to prevent condensation. CNR1 Specifications Sensors: Kipp & Zonen’s CM3 ISO-class, thermopile pyranometer, CG3 pyrgeometer, PT100 RTD Spectral Response Pyranometer: 305 to 2800 nm Pyrgeometer: 5000 to 50,000 nm Response Time: 18 seconds Sensitivity Range: 7 to 15 ?V W-1 m2 Output Range Pyranometer: 0 to 25 mV Pyrgeometer: ±5 mV Expected Accuracy for Daily Totals: ±10% Directional Error: <25 W m-2 (pyranometer) Heating Resistor: 24 Ohms, 6 W at 12 Vdc CE Compliance: CE compliant under the European Union’s EMC directive

  • Categories      

    The time-patterns of ground-level solar irradiance during the solar eclipse of 29 March, 2006, were observed at three Italian stations (Lampedusa, Mt. Cimone and Bologna) using different radiometric techniques. The global irradiance measured at the sites was found to reach the minimum at times not coinciding with those predicted by radiative transfer model evaluations, with ahead or lag times depending on the optical characteristics of the surface–atmosphere system in the areas surrounding of the stations. This different behaviour has been mainly attributed to the different influence of the environmental conditions on the diffuse radiance component measured at the observation sites. The present results indicate that the incoming diffuse radiance recorded at the three stations was appreciably affected by contributions arising from extended regions of about 30–100 km range from the stations. Such an explanation agrees very well with the theoretical evaluations obtained in earlier studies. The surrounding environmental areas of impact at ultraviolet wavelengths have been found to be wider than those in the visible and near-infrared spectral ranges

  • Categories      

    The CNR 4 net radiometer measures the energy balance between incoming short-wave and long-wave Far Infrared (FIR) radiation versus surface-reflected short-wave and outgoing long-wave radiation. The CNR 4 net radiometer consists of a pyranometer pair, one facing upward, the other facing downward, and a pyrgeometer pair in a similar configuration. The pyranometer pair measures the short-wave radiation. And the pyrgeometer pair measures long-wave radiation. The upper long-wave detector of CNR 4 has a meniscus dome. This ensures that water droplets role off easily and improves the field of view to nearly 180°, compared with a 150° for a flat window. All 4 sensors are integrated directly into the instrument body, instead of separate modules mounted onto the housing. But are each calibrated individually for optimal accuracy. Two temperature sensors, a Pt-100 and Thermistor, are integrated for compatibility with every data logger. The temperature sensor is used to provide information to correct the infrared readings for the temperature of the instrument housing. Care has been taken to place the long-wave sensors close to each other and close to the temperature sensors. This assures that the temperatures of the measurement surfaces are the same and accurately known. Which improves the quality of the long-wave measurements. Technical Characteristics: Spectral range: 300 to 2800 (short wave) nm Spectral range: 4500 to 42000 (long wave) nm Sensitivity: 5 to 20 µV/W/m² Temperature dependence of sensitivity (-10 ºC to +40 ºC) : < 4 % Response time: < 18 s Non-linearity: < 1 % Operating temperature: -40 to 80 °C Ventilation power (of the optional CNF 4 ventilation unit): 10 W

  • Grazie ad un radiometro CNR4 Kipp & Zonen, sono misurate le componenti incidente e riflessa della radiazione solare short-wave (lunghezza d’onda) e long-wave (lunghezza d’onda). Il radiometro è stato tarato presso il World Calibration Center del WMO di Davos prima della sua installazione. The CNR 4 net radiometer measures the energy balance between incoming short-wave and long-wave Far Infrared (FIR) radiation versus surface-reflected short-wave and outgoing long-wave radiation. The CNR 4 net radiometer consists of a pyranometer pair, one facing upward, the other facing downward, and a pyrgeometer pair in a similar configuration. The pyranometer pair measures the short-wave radiation. And the pyrgeometer pair measures long-wave radiation. The upper long-wave detector of CNR 4 has a meniscus dome. This ensures that water droplets role off easily and improves the field of view to nearly 180°, compared with a 150° for a flat window. All 4 sensors are integrated directly into the instrument body, instead of separate modules mounted onto the housing. But are each calibrated individually for optimal accuracy. Two temperature sensors, a Pt-100 and Thermistor, are integrated for compatibility with every data logger. The temperature sensor is used to provide information to correct the infrared readings for the temperature of the instrument housing. Care has been taken to place the long-wave sensors close to each other and close to the temperature sensors. This assures that the temperatures of the measurement surfaces are the same and accurately known. Which improves the quality of the long-wave measurements.

  • Categories  

    The CNR1 net radiometer by Kipp & Zonen is for applications requiring research-grade performance. The radiometer measures the energy balance between incoming short-wave and long-wave IR radiation versus surface-reflected short-wave and outgoing long-wave IR radiation. The CNR1 consists of a pyranometer and pyrgeometer pair that faces upward and a complementary pair that faces downward. The pyranometers and pyrgeometers measure short-wave and far infrared radiation, respectively. The CNR1 also includes an RTD to measure the radiometer’s internal temperature and a heater that can be used to prevent condensation.

  • Categories  

    The CNR1 net radiometer by Kipp & Zonen is for applications requiring research-grade performance. The radiometer measures the energy balance between incoming short-wave and long-wave IR radiation versus surface-reflected short-wave and outgoing long-wave IR radiation. The CNR1 consists of a pyranometer and pyrgeometer pair that faces upward and a complementary pair that faces downward. The pyranometers and pyrgeometers measure short-wave and far infrared radiation, respectively. The CNR1 also includes an RTD to measure the radiometer’s internal temperature and a heater that can be used to prevent condensation.

  • Grazie ad un radiometro CNR4 Kipp & Zonen, sono misurate le componenti incidente e riflessa della radiazione solare short-wave (lunghezza d’onda) e long-wave (lunghezza d’onda). Il radiometro è stato tarato presso il World Calibration Center del WMO di Davos prima della sua installazione. The CNR 4 net radiometer measures the energy balance between incoming short-wave and long-wave Far Infrared (FIR) radiation versus surface-reflected short-wave and outgoing long-wave radiation. The CNR 4 net radiometer consists of a pyranometer pair, one facing upward, the other facing downward, and a pyrgeometer pair in a similar configuration. The pyranometer pair measures the short-wave radiation. And the pyrgeometer pair measures long-wave radiation. The upper long-wave detector of CNR 4 has a meniscus dome. This ensures that water droplets role off easily and improves the field of view to nearly 180°, compared with a 150° for a flat window. All 4 sensors are integrated directly into the instrument body, instead of separate modules mounted onto the housing. But are each calibrated individually for optimal accuracy. Two temperature sensors, a Pt-100 and Thermistor, are integrated for compatibility with every data logger. The temperature sensor is used to provide information to correct the infrared readings for the temperature of the instrument housing. Care has been taken to place the long-wave sensors close to each other and close to the temperature sensors. This assures that the temperatures of the measurement surfaces are the same and accurately known. Which improves the quality of the long-wave measurements.

  • Categories      

    The CNR 4 net radiometer consists of a pyranometer pair, one facing upward, the other facing downward, and a pyrgeometer pair in a similar configuration. The pyranometer pair measures the short-wave radiation. And the pyrgeometer pair measures long-wave radiation. The upper long-wave detector of CNR 4 has a meniscus dome. This ensures that water droplets role off easily and improves the field of view to nearly 180°, compared with a 150° for a flat window. All 4 sensors are integrated directly into the instrument body, instead of separate modules mounted onto the housing. But are each calibrated individually for optimal accuracy. Two temperature sensors, a Pt-100 and Thermistor, are integrated for compatibility with every data logger. The temperature sensor is used to provide information to correct the infrared readings for the temperature of the instrument housing. Care has been taken to place the long-wave sensors close to each other and close to the temperature sensors. This assures that the temperatures of the measurement surfaces are the same and accurately known. Which improves the quality of the long-wave measurements. Technical Characteristics: Spectral range: 300 to 2800 (short wave) nm Spectral range: 4500 to 42000 (long wave) nm Sensitivity: 5 to 20 µV/W/m² Temperature dependence of sensitivity (-10 ºC to +40 ºC) : < 4 % Response time: < 18 s Non-linearity: < 1 % Operating temperature: -40 to 80 °C Ventilation power (of the optional CNF 4 ventilation unit): 10 W

  • The CNR4 Kipp & Zonen net radiometer measures the energy balance between incoming short-wave and long-wave Far Infrared (FIR) radiation versus surface-reflected short-wave and outgoing long-wave radiation. The CNR 4 net radiometer consists of a pyranometer pair, one facing upward, the other facing downward, and a pyrgeometer pair in a similar configuration. The pyranometer pair measures the short-wave radiation. And the pyrgeometer pair measures long-wave radiation. The upper long-wave detector of CNR 4 has a meniscus dome. This ensures that water droplets role off easily and improves the field of view to nearly 180°, compared with a 150° for a flat window. All 4 sensors are integrated directly into the instrument body, instead of separate modules mounted onto the housing. But are each calibrated individually for optimal accuracy. Two temperature sensors, a Pt-100 and Thermistor, are integrated for compatibility with every data logger. The temperature sensor is used to provide information to correct the infrared readings for the temperature of the instrument housing. Care has been taken to place the long-wave sensors close to each other and close to the temperature sensors. This assures that the temperatures of the measurement surfaces are the same and accurately known. Which improves the quality of the long-wave measurements.