From 1 - 10 / 16
  • Categories  

    The Valle d’Aosta is the region in the northwest Italy, with an extension of about 3262 km2, sets mainly in the Pennine and Graie Alps. In this context, landslides play an important role in the evolution of the mainly regional territory. In particular, the Valle d’Aosta region is one of the Italian region characterized by higher number of landslides, where landslide affecting an area of 520,35 km2 of the regional territory [Giardino & Ratto, 2007]. The entire territory has been investigated by space-borne technique, using the DInSAR technique by the ESA’s Grid Processing On-Demand (G-POD) service.

  • Categories  

    The Upper Tena Valley is located in the Central Spanish Pyrenees, between Sallent de Gallego and El Portalet municipality. This area is characterized by hundreds landslides different in type and in particular by two deep-seated slides whose development is due to the destabilization of the over steepened valley walls after the retreat of the glaciers (Herrera et al., 2013). This territory has been investigated by geomorphological investigation, in situ geotechnical investigation of the portion of the area that is involved in the two deep-seated slides, to exploit the possibility to detect a relationship between change of the rate of the landslides displacement and climatic parameters. Furthermore this territory has been investigated by space-borne technique. In particular, the SAR images were processed by PSInSAR technique by Altamira information (http://www.altamira-information.com/), available by the Framework Agreement between NextData Project and Terrafirma (the agreement was signed in July 2014).

  • Categories  

    At the Grange Orgiera landslide a topographic monitoring network has been installed on August 2009. The topographic network has located upstream Grange Orgiera hamlet, in correspondence to the left frontal lobe of the landslide. The network consists of a robotic total station, associated to a solar panel and a backup battery that guarantees its operation, and a GSM modem that allows a download of the data by remote connection; eight prisms, seven of which inside the landslide and one close to the landslide foot, and two reference points outside the landslide. This network allowed the monitoring of the left frontal lobe of the landslide, which threatened the Puy village. The topographic network was installed on July 2009 and recorded during the spring-autumn months, in particular from August 2009 since October 2009. In 2010 have been installed five new prisms within the landslide body, near the left frontal lobe of the landslide, and the monitoring network recorded from July 2010 to September 2010. The monitoring network allowed several automatic displacement measurements of the prisms inside and outside the landslide, using a robotic total station Leica TCA 1800. This high-performance instrument for the ground displacement surveying, allow to measure the angle (Hz and V) and distance measurement. Data collected by this total station permit to improve knowledge on surface ground deformation, and the geomorphological evolution of the landslide. In particular, the TCA 1800 total station used is characterized by: - Angle-measurement accuracy: Standard deviation (ISO 17123-2) of 1” (0.3 mgon); - Distance measurement (IR): Standard deviation (ISO 17123-4) 1mm + 2 ppm; Range 2.500 m, under average atmospheric conditions, i.e. visibility 15 km. - Automatic target recognition (ATR), under good atmospheric conditions: Accuracy at below 200 m of 1 mm; Accuracy at 500 m of 2 mm – 3 mm. For more information: http://www.leica-geosystems.com/downloads123/zz/tps/tps2000/brochures/tps2000_brochure_it.pdf

  • Categories  

    The Ivancich Inclinometer 113 is located inside the landslide at about 460 m asl, and is located in a 32,3 m deep borehole. The inclinometer probe measures tilt of two orthogonal axes “A” and “B”; in particular is read the measure corresponding to the axes inclination (θ). The conversion from angular values to displacement occurs through trigonometric function. The sine function, i.e. the angular value, is derived from the value produced by sensors, in general for measure between +/-15° from the vertical. The angle θ is the inclination angle from vertical, the hypotenuse is the pace of the probe, i.e. the measuring range, or step of readings (generally 0.5 m), while the opposite side is the lateral “deviation”. The lateral displacements are calculated at each depth; for convention this value is called “lateral deviation”. The sum of successive lateral deviation is called “cumulative deviation”. The cumulative deviation variations define the inclinometer tube displacement. The incremental displacement represents the variation from each measurement interval. The cumulative displacement is the sum of the incremental displacements. The common inclinometers data graphs showing the displays cumulative lateral deformation with depth, starting at the bottom of the casing and summing increments of displacement for each measured interval up to the ground surface. The inclinometer 113 time series provide data for the observed period from November 1998 to December 2006, and are organized as follows: Depth (m): measured interval from the bottom of the casing up to the ground surface (0,5 m step) Data: gg/mm/aaa Raw data A0 – A180 – B0 – B180: numbers recorded by the probe corresponding to the values of the tube inclination relative to the vertical, projected on the planes A and B; the measure unit is expressed in digit (electrical value). CheckSum A and B: add of the two values obtained in diametrically opposite direction at the same depth. The checksums produce a constant value, where a low standard deviation would confirm data quality. Lateral deviation A – B – Resultant: lateral displacements are calculated at each depth Cumulative deviation SA – SB – Resultant: sum of successive lateral deviation Differential Lateral Deviation A Diff – B Diff – Resultant Diff: incremental displacement represents the variation from each measurement interval Cumulative Displacement SAInt Diff – SB Int Diff – Resultant Ins Diff: sum of the incremental displacements. The main feature of the inclinometer 113 are: Inclinometer Tube Internal Diameter – 76.1 mm Probe type – Sinco Digitilt Inclinometer (P/N 50302510 S/N 28447) Probe unit – meter Probe constant – 25000 sinα Probe Type – Biaxial Probe Sensors – Servoinclinometers Shallowest depth: 1 m Deepest Depth: 32.3 m Reading Interval: 0.5 m A0 Direction: N220 Height of the reference plan (P.R.) relative to campaign plan (p.c.): +0.20 m Depth probe relative to p.c.: 32.30 m

  • Categories  

    The Grange Orgiera in situ ground deformation time series include deformation data from the topographic monitoring network, installed on the Grange Orgiera landslide. In particular, provide the differential displacement (in cm), of planimetric and altimetric displacement, for each prism of the network. The monitoring network includes eight prism inside (1, 2, 3, 4, 5, 7, 8, 20) the landslide and five within (6, 16, 17, 18, 19), located in correspondence of the left frontal lobe of the Grange Orgiera landslide. The archive provide two distinct time period: - August 2009 – October 2009, for the prisms from 1 to 8; - July 2010 – September 2010, for all the prisms. The time series present a very high temporal sampling (hourly), and provide the differential displacement for the planimetric (Δxy) and altimetric (Δz) displacement (in cm). All the spikes interpreted as noise were been delete to the time series.

  • Categories  

    At the Namche AWS the DMA570 Lsi-Lastem Thermohygrometer is mounted on a 2 m pole. It is a probe for measuring air temperature and air relative humidity with replaceable sensitive element for simplify calibration and maintenance. LSI-Lastem supplies a precise and reliable set of probes, suitable for a continuous measurement in severe environments, in presence of deep thermal and hygrometric ranges with high sun radiant heat. An important feature of this set of sensor is that the thermohygrometric sensitive element is easily replaceable, in order to have a simple and rapid ordinary maintenance and avoiding calibration. The Thermohygrometer has supported a considerable improvement, owing to a deep technical and styling development process: a fan ensures a continuos air change around the sensor in order to eliminate temperature fault caused by radiant heat. For temperature: Range -30.+70°C Sensitive element Pt100 1/3 DIN-B Accuracy ± 0,1°C (0°C) Hysteresis&Repeatability na Resolution 0,025°C Long term stability -0.04% (after 5 years at 200°C) Calibration uncertainty 0,1°C Response time (T63) Wind speed 0,3-0,5 m/s: 80sec Radiation shield efficiency with respect to forced ventilation sensor (wind 0,5m/s, rad.800 W/m2): +0,6°C For relative humidity: Range: Nom.0..100%, Eff.10..98% Sensitive element Capacitive Accuracy 2,5% (11-90%) 0,6°C (20°C, 50%RH) Hysteresis&Repeatability 0,5% Resolution 0,2% Long term stability -2%/year (at 75%RH) n.a. Calibration uncertainty 0,1°C 1,5% na Response time (T63) Wind speed 0,3-0,5 m/s: 80sec Radiation shield efficiency with respect to forced ventilation sensor (wind 0,5m/s, rad.800 W/m2): n.a. General characteristic: Ventilation: Natural Electric output Jumper locally selectable 2 x 0-20 mA, 4-20 mA, 0-5 V, 1-5 V. 60-300 mV Output signals Output n.1: temperature. Output n.2: RH% or dew point (default RH%) Operating temperature -30°+70°C Sampling rate 1 sec. (default) PC programmable 1..300 sec. N°acquisitions for mobile average calculation: N°1 (default), PC programmable 1..20 acquisitions Load resistance (mA output): DMA570 300 Ohm

  • Categories  

    The Grange Orgiera landslide is a wide phenomenon of the Western Alps occurred in July 2009, located in Sampeyre municipality (CN, Piedmont), on the left side of the Varaita Valley. This is a complex landslide, in particular, classify as a rotational slide evolved in a flow like landslide. Its activation was related to the extraordinary abundant snowfall of 2008-2009 winter, identified as an anomalous event of the last forty-year of a climatological point of view [on-line report Arpa Piemonte, 2009], and the subsequent snowmelt. From a geomorphological point of view, this event represent a reactivation of a rotational landslide extended from 2150 m asl to 1720 m asl, close to the Grange Orgiera village. This landslide is included in a more extensive gravitative event, extended from Pian delle Serre (about 2270 m asl) to Villar municipality (about 1100 m asl). Moreover, at the slope scale, these landslides were included in a Deep Seated Gravitational Slope Deformation (DsGSD) of about 20 km2, between Villar and Casteldelfino hamlets. Starting from July 2009 the Grange Orgiera event was monitored with a topographic monitoring network, located in correspondence of the left frontal lobe of the landslide. The landslide was monitored for two distinct period: from August 2009 to October 2009, and from July 2010 to September 2010.

  • Categories  

    The Ivancich Inclinometer 117 is located inside the landslide at about 449 m asl, and is located in a 20,35 m deep borehole. The inclinometer probe measures tilt of two orthogonal axes “A” and “B”; in particular is read the measure corresponding to the axes inclination (θ). The conversion from angular values to displacement occurs through trigonometric function. The sine function, i.e. the angular value, is derived from the value produced by sensors, in general for measure between +/-15° from the vertical. The angle θ is the inclination angle from vertical, the hypotenuse is the pace of the probe, i.e. the measuring range, or step of readings (generally 0.5 m), while the opposite side is the lateral “deviation”. The lateral displacements are calculated at each depth; for convention this value is called “lateral deviation”. The sum of successive lateral deviation is called “cumulative deviation”. The cumulative deviation variations define the inclinometer tube displacement. The incremental displacement represents the variation from each measurement interval. The cumulative displacement is the sum of the incremental displacements. The common inclinometers data graphs showing the displays cumulative lateral deformation with depth, starting at the bottom of the casing and summing increments of displacement for each measured interval up to the ground surface. The inclinometer 117 time series provide data for the observed period from November 1998 to December 2006, and are organized as follows: Depth (m): measured interval from the bottom of the casing up to the ground surface (0,5 m step) Data: gg/mm/aaa Raw data A0 – A180 – B0 – B180: numbers recorded by the probe corresponding to the values of the tube inclination relative to the vertical, projected on the planes A and B; the measure unit is expressed in digit (electrical value). CheckSum A and B: add of the two values obtained in diametrically opposite direction at the same depth. The checksums produce a constant value, where a low standard deviation would confirm data quality. Lateral deviation A – B – Resultant: lateral displacements are calculated at each depth Cumulative deviation SA – SB – Resultant: sum of successive lateral deviation Differential Lateral Deviation A Diff – B Diff – Resultant Diff: incremental displacement represents the variation from each measurement interval Cumulative Displacement SAInt Diff – SB Int Diff – Resultant Ins Diff: sum of the incremental displacements. The main feature of the inclinometer 117 are: Inclinometer tube Internal Diameter – 76.1 mm Probe type – Sinco Digitilt Inclinometer (P/N 50302510 S/N 28447) Probe unit – meter Probe constant – 25000 sinα Probe Type – Biaxial Probe Sensors – Servoinclinometers Shallowest depth: 1 m Deepest Depth: 20.35 m Reading Interval: 0.5 m A0 Direction: N240 Height of the reference plan (P.R.) relative to campaign plan (p.c.): +0.15 m Depth probe relative to p.c.: 20.35 m

  • Categories  

    The Ivancich Inclinometer 202 is located inside the landslide at about 510 m asl, and is located in a 54,50 m deep borehole. The inclinometer probe measures tilt of two orthogonal axes “A” and “B”; in particular is read the measure corresponding to the axes inclination (θ). The conversion from angular values to displacement occurs through trigonometric function. The sine function, i.e. the angular value, is derived from the value produced by sensors, in general for measure between +/-15° from the vertical. The angle θ is the inclination angle from vertical, the hypotenuse is the pace of the probe, i.e. the measuring range, or step of readings (generally 0.5 m), while the opposite side is the lateral “deviation”. The lateral displacements are calculated at each depth; for convention this value is called “lateral deviation”. The sum of successive lateral deviation is called “cumulative deviation”. The cumulative deviation variations define the inclinometer tube displacement. The incremental displacement represents the variation from each measurement interval. The cumulative displacement is the sum of the incremental displacements. The common inclinometers data graphs showing the displays cumulative lateral deformation with depth, starting at the bottom of the casing and summing increments of displacement for each measured interval up to the ground surface. The inclinometer 202 time series provide data for the observed period from November 1998 to December 2006, and are organized as follows: Depth (m): measured interval from the bottom of the casing up to the ground surface (0,5 m step) Data: gg/mm/aaa Raw data A0 – A180 – B0 – B180: numbers recorded by the probe corresponding to the values of the tube inclination relative to the vertical, projected on the planes A and B; the measure unit is expressed in digit (electrical value). CheckSum A and B: add of the two values obtained in diametrically opposite direction at the same depth. The checksums produce a constant value, where a low standard deviation would confirm data quality. Lateral deviation A – B – Resultant: lateral displacements are calculated at each depth Cumulative deviation SA – SB – Resultant: sum of successive lateral deviation Differential Lateral Deviation A Diff – B Diff – Resultant Diff: incremental displacement represents the variation from each measurement interval Cumulative Displacement SAInt Diff – SB Int Diff – Resultant Ins Diff: sum of the incremental displacements. The main feature of the inclinometer 202 are: Inclinometer Tube Internal Diameter – 76.1 mm Probe type – Sinco Digitilt Inclinometer (P/N 50302510 S/N 28447) Probe unit – meter Probe constant – 25000 sinα Probe Type – Biaxial Probe Sensors – Servoinclinometers Shallowest depth: 1 m Deepest Depth: 54.50 m Reading Interval: 0.5 m A0 Direction: N230 Height of the reference plan (P.R.) relative to campaign plan (p.c.) Depth probe relative to p.c.: 54.50 m

  • Categories  

    The Ivancich landslide is a phenomenon located in Assisi municipality (PG), in Umbria region, which affects the northern sector of the city. From a geomorphological point of view, this event is an old translational slide with a rotational component in the source area. The landslide has been divide in an active sector, distinguishing in the crow area (dark red in the picture) and the landslide deposits (light red in the picture), and an ancient relict sector, distinguishing in the crown area (dark blue in the picture) and the landslide deposits (light blue in the picture) [From: Antonini, G., Ardizzone, F., Cacciano, M., Cardinali, M., Castellani, M., Galli, M., Guzzetti, F., Reichenbach, P., Salvati, P., 2002a. Rapporto Conclusivo Protocollo d'Intesa fra la Regione dell'Umbria, Direzione Politiche Territoriali Ambiente e Infrastrutture, ed il CNR–IRPI di Perugia per l'acquisizione di nuove informazioni sui fenomeni franosi nella regione dell'Umbria, la realizzazione di una nuova carta inventario dei movimenti franosi e dei siti colpiti da dissesto, l'individuazione e la perimetrazione delle aree a rischio da frana di particolare rilevanza, e l'aggiornamento delle stime sull'incidenza dei fenomeni di dissesto sul tessuto insediativo, infrastrutturale e produttivo regionale. Unpublished report, May 2002, 140 pp., (in Italian)]. The landslide is extended from an elevation of 660 m asl to 350 m asl, and involves in a debris deposits. This landslide was monitored with geological and engineering investigations since the 1970’s, consequently roads and buildings damages registered. In particular the Ivancich landslide was monitored from 1982 to 2008 with topographic and inclinometer measurements. The data refer to an extended monitoring network of the landslide and in particular the data of the inclinometer number 103, 113B, 117, and 202 were published in Calò et al. (2014) "Enhanced landslide investigations through advanced DInSAR techniques: The Ivancich case study, Assisi, Italy" Remote Sensing of Environment, 142: 69-82. This dataset is a courtesy of Ing. Maceo Giovanni Angeli (IRPI-CNR) and Dr. Geol. Fabrizio Pontoni (private consultant).