Keyword

global change

7 record(s)

 

Type of resources

Available actions

Topics

Keywords

Contact for the resource

Provided by

Update frequencies

Status

From 1 - 7 / 7
  • Categories      

    The Himalayan-Karakoram range - for its elevation and geographic location, represents one of the ideal places for studying long-range pollutant transport systems on a regional scale and for monitoring changes index by mechanisms that act on global scale through monsoon circulation. This book offers a comprehension of the environmental phenomena

  • Categories      

    The most remote regions of globe represent some of the least disturbed ecosystems, yet they are threatened by air pollution and by climatic change. The Himalaya is one of the most isolated regions in the world and least explored wildernesses outside the Polar Regions; and it is for this reason that the Tibetan Plateau is often referred to as the ‘Third Pole’. Limnological survey (including chemistry, biology and sediment core studies) of lakes located between ca. 4500 and 5500 m a.s.l. has been performed from 1992 in the Kumbhu Valley, Nepal. Lake water chemical surveys reveal a constant increase of the ionic content of the lake water probably related to glacier retreat. Modern phytoplankton data compared with previous data point to an increasing trend in lake productivity. Zooplankton, benthos and thechamoebians provide useful biogeographical information. Paleolimnological reconstructions show the potential use of these sites in providing proxy data of past climatic changes in high altitude regions. Data collected of persistent organic pollutants show that the studied sites receive input related to long-range transport pollution. The aims and rationale for the future development of the Ev-K2-CNR Limnological Information System is discussed.

  • Categories    

    A Cimel sunphotometer operating in the framework of the AERONET project has been installed at the Himalayan Ev-K2-CNR Pyramid (5079 m a.s.l.) in the year 2006, as site Ev-K2-CNR. The observational activity will provide a characterization of the optical and microphysical properties of atmospheric aerosols, in particular of the atmospheric brown cloud (ABC) in the Himalayan region. This paper will describe the Cimel sunphotometer measurement technique, will introduce to the AERONET programme and will evaluate the contribution of the proposed Ev-K2-CNR AERONET site to the study of the ABC.

  • Categories  

    This work describes the preliminary results of a study aimed at: (1) assessing the ability of a general circulation model routinely run at the Epson Meteo Centre (CEM) in predicting daily rainfall; (2) evaluating the performance of satellite-derived precipitation estimates (namely, NOAA CPC CMORPH) over the same domain and during the same period. The CPC daily rain gauge analysis is used as reference for validation. The study focused on the Indian Monsoon during summer 2004, and comparison with a similar analysis at the mid-latitudes is also shown.

  • Categories    

    The Himalayan–Karakoram range is located in one of the most densely populated and very rapidly developing world areas. Monitoring of atmospheric composition in this area can play a relevant role in evaluating the background conditions of the free troposphere and quantifying the pollution present at high altitudes, as well as in studying regional and long-range transport phenomena. Due to technical and logistic difficulties in carrying out measurements at high altitude in the Himalaya, no systematic observations of atmospheric constituents are available for this area. Thus, a new measurement station in such a region represents a unique source of data, able to make up for the prior lack of this information. For these reasons, in the framework of the SHARE-Asia and ABC projects, a remote monitoring station, the ABC-Pyramid Laboratory, will be installed in the Khumbu valley near Mt. Everst at 5079 m a.s.l. Continuous in situ measurements of chemical, physical and optical properties of aerosol, surface ozone concentration, as well as non-continuous measurements of halocarbons and other greenhouse-gas concentrations will be carried out. This monitoring station was projected, realised and tested in Bologna at CNR-ISAC Institute during autumn 2005. It was designed to be controlled by remote login and to operate for the long-term in extremely adverse weather conditions. This station represents an ideal place for studying regional and long-range air mass transport, due to natural and human processes. Precious 5-day forecast information about air-masses circulation at the ABC-Pyramid site will be supplied daily by Lagrangian backward trajectories, including suitable forecasts of stratosphere-troposphere exchange phenomena.

  • The Ev-K2-CNR Project has been promoting and developing research at high altitude (>2,500 m a.sl.) in the Himalaya and Karakoram since 1987. Recently, activities have been focused on development of a monitoring network (stations at High Altitude for Research on the Environment in Asia: SHARE-Asia) to increase the environmental and geophysical scientific knowledge in these mountain regions. Research and monitoring activity at high altitude require a particular experience and a well-organized network. Ev-K2-CNR has accumulated a significant experience in managing a high altitude network of automatic weather stations along the Khumbu Valley (Nepal) and in northern Pakistan (Baltistan region) in the framework of the Coordinated Enhanced Observing Period Project. With the installation of an Atmospheric Brown Clouds Project (ABC) monitoring station near the Pyramid Laboratory-Observatory in 2006, near the base of Mount Everest, SHARE-Asia can also contribute to the study of atmospheric circulation of pollutants. The “ABC-Pyramid” is the first of a network of stations that are planned to be installed at altitudes between 2,500 and 5,000 m a.s.l. along the Himalayan–Karakoram chain. These stations will be operated under active cooperation with the local scientific community, creating ample cooperation between western countries and developing countries in the region.

  • Categories    

    The International Global Atmospheric Chemistry (IGAC) project was created in the late 1980s to address growing international concerns over rapid changes observed in Earth's atmosphere. Much of IGAC's research effort during its first decade was directed towards assessing the effects of anthropogenic emissions on the background atmosphere. While questions remain concerning the point at which observed global/regional mean trends in component concentrations (signal) unambiguously rise above background natural variability (noise), it is now well recognized that human activities have perturbed the chemical composition of the atmosphere at local, regional, and global scales. Two overarching questions have emerged that constitute the basis for the IGAC action plan over the next decade: (1) What is the role of atmospheric chemistry in amplifying or damping climate change? (2) Within the Earth System, what effects do changing regional emissions and depositions, long-range transport, and chemical transformations have on air quality and the chemical composition of the planetary boundary layer? Within the context of the larger ABC-Asia project, a proposal was put forward for the activation of an ABC-IGAC Task focusing on the monitoring of aerosol and trace gases over the Asia–Pacific region and on estimating their impact on atmospheric chemistry and the radiation budget. The activities currently in progress, to include the Ev-K2-CNR Pyramid observatory in the Atmospheric Brown Cloud (ABC) monitoring network under the Stations at High Altitude for Research on the Environment in Asia (SHARE-Asia) project, aim at providing an important contribution to ABC-Asia and, at the same time, will undoubtedly be an opportunity for the Italian community of global-change researchers.