The photolysis of atmospheric nitrous acid (HONO) is a significant source of OH radicals in remote and Polar Regions. HONO is produced in/on snow surfaces in a photochemical reaction from nitrate ions. In an attempt to quantify the production of HONO at a snow covered mid-latitude location we made measurements of HONO fluxes for a 10-day period at the Mt. Cimone (MTC) research station in the Italian northern Apennines (2165 m asl) during March 2004. Production fluxes under normal background conditions were small, and reached maximum values of 20 nmol m-2 h-1 on only two occasions. However, during a transport event of Saharan dust to MTC we observed deposition fluxes of up to -120 nmol m-2 h-1 of HONO on to the snow surface. The deposited Sahara dust had rendered the surface snow alkaline, so that large amounts of acids could be absorbed from the atmosphere.
Chlorofluorocarbons and their replacement compounds are anthropogenic compounds of great environmental concern. For this reason monitoring their atmospheric mixing ratios on a worldwide scale is recommended. An analytical methodology for the simultaneous determination of selected chlorofluorocarbons and their replacement compounds has recently been developed. This methodology was applied in the analysis of actual air samples collected in remote and semi-remote areas located in the Northern and Southern Hemispheres. The concentration levels measured in the air samples collected in the two hemispheres are reported.
Our institute has recently developed a differential optical absorption spectrometry system called the gas analyzer spectrometer correlating optical absorption differences (GASCOAD), which features as a detector a linear image sensor that uses an artificial light source for long-path tropospheric-pollution monitoring. The GASCOAD, its method of eliminating interference from background sky light, and subsequent spectral analysis are reported and discussed. The spectrometer was used from 7 to 22 February 1993 in Milan, a heavily polluted metropolitan area, to measure the concentrations of SO2, NO2, O3, and HNO2 averaged over a 1.7-km horizontal light path. The findings are reported and briefly discussed.