The 7Be activity concentrations measured from 1996 to 1998 at four high-altitude stations, Jungfraujoch—Switzerland, Zugspitze—Germany, Sonnblick—Austria and Mt. Cimone—Italy, were analyzed in combination with a set of, meteorological and atmospheric parameters such as the tropopause height, relative and specific humidity and also in conjunction with 3D back-trajectories in order to investigate the climatological features of 7Be. A frequency distribution analysis on 7Be activity concentrations revealed the existence of two concentration classes around 1.5 and 6 mBq m(-3) and a transition class between the two modes of the distribution at 3-4 mBq (m-3). Cross-correlation analysis performed between 7Be and a number of meteorological and atmospheric parameters at the first three stations showed a strong negative correlation with relative humidity (-0.56, -0.51,-0.41) indicating the importance of wet scavenging as a controlling mechanism. Also, the positive correlation with the height of 3-days back-trajectories and tropopause height (+0.49/+0.43, +0.59/+0.36, +0.44/+0.38) shows that downward transport from the upper or middle to lower troposphere within anticyclonic conditions plays also an important role. Trajectory statistics showed that low 7Be concentrations typically originate from lower-altitude subtropical ocean areas, while high concentrations arrive from the north and high altitudes, as is characteristic for stratospheric intrusions. Although the 7Be activity concentrations are highly episodic, the monthly means indicate an annual cycle with a late-summer maximum at all stations. The correlation coefficients calculated for monthly means of the 7Be and atmospheric data suggest that the main predictor controlling the seasonality of the 7Be concentrations is tropopause height (+0.76, +0.56, +0.60), reflecting more vertical transport from upper tropospheric levels into the lower troposphere during the warm season than during the cold season.
Continuous surface ozone measurements are conducted since 1996 within the Global Atmospheric Watch (GAW) programme of the World Meteorological Organization.
From 1996, a UV-absorption analyser (Dasibi 1108 W-GEN) is used to measure surface ozone with an accuracy of better than 5% and one minute time resolution.
In order to point out and study transports of ozone rich air masses in the lower troposphere from the stratosphere/upper troposphere, continuous measurements of several parameters have been undertaken at Mt. Cimone during the European Community VOTALP project (Vertical Ozone Transport in the Alps). Several high values of surface ozone concentration due to vertical stratospheric-tropospheric exchanges have been recorded in the four mountain peak stations involved in this project (Jungfraujoch, Sonnblick, Zugspitze and Mt. Cimone) in 1996–1997. This paper presents and analyses data concerning the Mt. Cimone ground-based station, which is the highest peak of the Italian Northern Apennines and the most representative WMO-GAW site in Italy. Episodes of vertical exchange in the lower stratosphere, as tropopause folding, or in the upper troposphere, as down draft transport, have been registered at Mt. Cimone since March 1996 and subsequently studied. In fact, the comparison between the behaviours of different background trace gases at a mountain baseline station, the weather situations and the backward trajectory analyses can bring to light these events and be very useful for a better knowledge of transport phenomena. Correlation between high level of ozone concentration, chemical and meteorological parameters and three-dimensional backward trajectories relative to two particular events are herein presented.