Halocarbons are powerful greenhouse gases capable of significantly influencing the radiative forcing of the Earth’s atmosphere. Halocarbons are monitored in several stations which are globally distributed in order to assess long term atmospheric trends and to identify source regions. However, to achieve these aims the definition of background mixing ratios, i.e. the mixing ratio in a given air mass when the recent contribution of local sources is absent, is necessary. This task can be accomplished using different methods. This paper presents a statistical methodology that has been devised specifically for a mountain site located in Continental Europe (Monte Cimone, Italy), characterised by the vicinity of strong sources. The method involves the decomposition of the observed data distribution into a Gaussian distribution, representative of background values, and a Gamma distribution, ascribable to contribution from stronger sources. The method has been applied to a time series from a European marine remote station (Mace Head, Ireland) as well as to time series from Monte Cimone. A comparison of the methodology described in this paper with a well-established meteorological filtering procedure at Mace Head has shown an excellent agreement. A comparison of the baselines at Mace Head, Mt. Cimone and the Swiss alpine station of the Jungfraujoch highlighted the occurrence of a specific background concentration. Although this paper presents the application of the method to three hydrofluorocarbons, the proposed methodology can be extended to any long lived atmospheric component for which a long term time series is available and at any location even if affected by strong source regions.
European emissions of nine representative halocarbons (CFC-11, CFC-12, Halon 1211, HCFC-141b, HCFC-142b, HCFC-22, HFC-125, HFC-134a, HFC-152a) are derived for the year 2009 by combining long-term observations in Switzerland, Italy, and Ireland with campaign measurements from Hungary. For the first time, halocarbon emissions over Eastern Europe are assessed by top-down methods, and these results are compared to Western European emissions. The employed inversion method builds on least-squares optimization linking atmospheric observations with calculations from the Lagrangian particle dispersion model FLEXPART. The aggregated halocarbon emissions over the study area are estimated at 125 (106–150) Tg of CO2 equiv/y, of which the hydrofluorocarbons (HFCs) make up the most important fraction with 41% (31–52%). We find that chlorofluorocarbon (CFC) emissions from banks are still significant and account for 35% (27–43%) of total halocarbon emissions in Europe. The regional differences in per capita emissions are only small for the HFCs, while emissions of CFCs and hydrochlorofluorocarbons (HCFCs) tend to be higher in Western Europe compared to Eastern Europe. In total, the inferred per capita emissions are similar to estimates for China, but 3.5 (2.3–4.5) times lower than for the United States. Our study demonstrates the large benefits of adding a strategically well placed measurement site to the existing European observation network of halocarbons, as it extends the coverage of the inversion domain toward Eastern Europe and helps to better constrain the emissions over Central Europe.
Ground-based in situ measurements of 1,1-difluoroethane (HFC-152a, CH3CHF2) which is regulated under the Kyoto Protocol are reported under the auspices of the AGAGE (Advanced Global Atmospheric Gases Experiment) and SOGE (System of Observation of halogenated Greenhouse gases in Europe) programs. Observations of HFC-152a at five locations (four European and one Australian) over a 10 year period were recorded. The annual average growth rate of HFC-152a in the midlatitude Northern Hemisphere has risen from 0.11 ppt/yr to 0.6 ppt/yr from 1994 to 2004. The Southern Hemisphere annual average growth rate has risen from 0.09 ppt/yr to 0.4 ppt/yr from 1998 to 2004. The 2004 average mixing ratio for HFC-152a was 5.0 ppt and 1.8 ppt in the Northern and Southern hemispheres, respectively. The annual cycle observed for this species in both hemispheres is approximately consistent with measured annual cycles at the same locations in other gases which are destroyed by OH. Yearly global emissions of HFC-152a from 1994 to 2004 are derived using the global mean HFC-152a observations and a 12-box 2-D model. The global emission of HFC-152a has risen from 7 Kt/yr to 28 Kt/yr from 1995 to 2004. On the basis of observations of above-baseline elevations in the HFC-152a record and a consumption model, regional emission estimates for Europe and Australia are calculated, indicating accelerating emissions from Europe since 2000. The overall European emission in 2004 ranges from 1.5 to 4.0 Kt/year, 5–15% of global emissions for 1,1-difluoroethane, while the Australian contribution is negligible at 5–10 tonnes/year, <0.05% of global emissions.