Contact for the resource

Italian Air Force Meteorological Service – C.A.M.M. Mt. Cimone,

3 record(s)

 

Type of resources

Available actions

Topics

Keywords

Contact for the resource

Provided by

Update frequencies

Status

From 1 - 3 / 3
  • Categories      

    Measurements of cosmogenic and natural airborne radiotracers were carried out at Mt. Cimone, Italy (44 degrees 11N, 10 degrees 42E; 2165 m a.s.l.). This work concerns measurements of Be-7, Pb-210 and R-222, inorder to point out the detection and the identification of air massesof different origin reaching Mt. Cimone. Some preliminary data are presented.

  • Categories    

    In order to point out and study transports of ozone rich air masses in the lower troposphere from the stratosphere/upper troposphere, continuous measurements of several parameters have been undertaken at Mt. Cimone during the European Community VOTALP project (Vertical Ozone Transport in the Alps). Several high values of surface ozone concentration due to vertical stratospheric-tropospheric exchanges have been recorded in the four mountain peak stations involved in this project (Jungfraujoch, Sonnblick, Zugspitze and Mt. Cimone) in 1996–1997. This paper presents and analyses data concerning the Mt. Cimone ground-based station, which is the highest peak of the Italian Northern Apennines and the most representative WMO-GAW site in Italy. Episodes of vertical exchange in the lower stratosphere, as tropopause folding, or in the upper troposphere, as down draft transport, have been registered at Mt. Cimone since March 1996 and subsequently studied. In fact, the comparison between the behaviours of different background trace gases at a mountain baseline station, the weather situations and the backward trajectory analyses can bring to light these events and be very useful for a better knowledge of transport phenomena. Correlation between high level of ozone concentration, chemical and meteorological parameters and three-dimensional backward trajectories relative to two particular events are herein presented.

  • Categories    

    Ground-based in situ measurements of hydrofluorocarbons HFC-125, HFC-134a, and HFC-152a, which are regulated under the Kyoto Protocol, are carried out at four European sites within the SOGE (System of Observation of Halogenated Greenhouse Gases in Europe) program. Concentrations measured at the high mountain stations of Jungfraujoch (Switzerland) and Mte Cimone (Italy) together with back-trajectory statistical analysis are used in order to identify potential source regions on a European scale. Combining concentration data recorded at the two sites allows to reduce one of the problem which is inherent to the back-trajectory approach, i.e. the localisation of "ghost" sources in the wake of real sources. In this way, a more reliable picture of the location of European potential source regions is given.