Keyword

aerosol properties

2 record(s)

 

Type of resources

Available actions

Topics

Keywords

Contact for the resource

Provided by

Update frequencies

Status

From 1 - 2 / 2
  • Categories    

    Absorption photometers for real time application have been available since the 1980s, but the use of filter-based instruments to derive information on aerosol properties (absorption coefficient and black carbon, BC) is still a matter of debate. Several workshops have been conducted to investigate the performance of individual instruments over the intervening years. Two workshops with large sets of aerosol absorption photometers were conducted in 2005 and 2007. The data from these instruments were corrected using existing methods before further analysis. The inter-comparison shows a large variation between the responses to absorbing aerosol particles for different types of instruments. The unit to unit variability between instruments can be up to 30% for Particle Soot Absorption Photometers (PSAPs) and Aethalometers. Multi Angle Absorption Photometers (MAAPs) showed a variability of less than 5%. Reasons for the high variability were identified to be variations in sample flow and spot size. It was observed that different flow rates influence system performance with respect to response to absorption and instrumental noise. Measurements with non absorbing particles showed that the current corrections of a cross sensitivity to particle scattering are not sufficient. Remaining cross sensitivities were found to be a function of the total particle load on the filter. The large variation between the response to absorbing aerosol particles for different types of instruments indicates that current correction functions for absorption photometers are not adequate.

  • Categories    

    High levels of trace gas (O3 and CO) and aerosol (BC, fine and coarse particle volumes), as well as high scattering coefficient values, were recorded at the regional GAW-WMO station of Mt. Cimone (CMN, 2165 m a.s.l., Italy) during the period 26–30 August 2007. Analysis of air-mass circulation, aerosol chemical characterization and trace gas and aerosol enhancement ratios (ERs), showed that high O3 and aerosol levels were likely linked to (i) the transport of anthropogenic pollution from northern Italy, and (ii) the advection of air masses rich in mineral dust and biomass burning (BB) products from North Africa. In particular, during the advection of air masses from North Africa, the CO and aerosol levels (CO: 175 ppbv, BC: 1015 ng/m3, fine particle volume: 3.00 µm3 cm-3, ðp: 84.5 Mm-1) were even higher than during the pollution event (CO: 138 ppbv, BC: 733 ng/m3, fine particles volume: 1.58 µm3 cm-3, ðp: 44.9 Mm-1). Moreover, despite the presence of mineral dust able to affect significantly the O3 concentration, the analysis of ERs showed that the BB event represented an efficient source of fine aerosol particles (e.g. BC), but also of the O3 recorded at CMN. In particular, the calculated O3/CO ERs (0.10–0.17 ppbv/ppbv) were in the range of values found in literature for relatively aged (2–4 days) BB plumes and suggested significant photochemical O3 production during the air-mass transport. For fine particles and ðp, the calculated ERs was higher in the BB plumes than during the anthropogenic pollution events, stressing the importance of the identified BB event as a source of atmospheric aerosol able to affect the atmospheric radiation budget. These results suggest that episodes of mineral dust mobilization and wildfire emissions over North Africa could significantly influence radiative properties (as deduced from ðp observations at CMN) and air quality over the Mediterranean basin and northern Italy.