Growth and development are clearly affected by high-altitude exposure to hypoxia, nutritional stress, cold or a combination of these factors. Very little research has been conducted on the growth and nutritional status of children living on the Tibetan Plateau. The present study evaluated the environmental impact on human growth by analyzing anthropometric characteristics of Tibetan children aged 8-14, born and raised above 4000 m altitude on the Himalayan massif in the prefecture of Shegar in Tibet Autonomous Region. Data on anthropometric traits, never measured in this population, were collected and the nutritional status was assessed. A reference data set is provided for this population. There was no evidence of wasting but stunting was detected (28.3%). Children permanently exposed to the high-altitude environment above 4000 m present a phenotypic form of adaptation and a moderate reduction in linear growth. However, it is also necessary to consider the effects of socioeconomic deprivation.
A very high ventilatory response to hypoxia is believed necessary to reach extreme altitude without oxygen. Alternatively, the excessive ventilation could be counterproductive by exhausting the ventilatory reserve early on. To test these alternatives, 11 elite climbers (2004 Everest-K2 Italian Expedition) were evaluated as follows: 1) at sea level, and 2) at 5,200?m, after 15 days of acclimatisation at altitude. Resting oxygen saturation, minute ventilation, breathing rate, hypoxic ventilatory response, maximal voluntary ventilation, ventilatory reserve (at oxygen saturation?=?70%) and two indices of ventilatory efficiency were measured. Everest and K2 summits were reached 29 and 61 days, respectively, after the last measurement. Five climbers summited without oxygen, the other six did not, or succeeded with oxygen (two climbers). At sea level, all data were similar. At 5,200?m, the five summiters without oxygen showed lower resting minute ventilation, breathing rate and ventilatory response to hypoxia, and higher ventilatory reserve and ventilatory efficiency, compared to the other climbers. Thus, the more successful climbers had smaller responses to hypoxia during acclimatisation to 5,200?m, but, as a result, had greater available reserve for the summit. A less sensitive hypoxic response and a greater ventilatory efficiency might increase ventilatory reserve and allow sustainable ventilation in the extreme hypoxia at the summit.
A very high ventilatory response to hypoxia is believed necessary to reach extreme altitude without oxygen. Alternatively, the excessive ventilation could be counterproductive by exhausting the ventilatory reserve early on. To test these alternatives, 11 elite climbers (2004 Everest-K2 Italian Expedition) were evaluated as follows: 1) at sea level, and 2) at 5,200 m, after 15 days of acclimatisation at altitude. Resting oxygen saturation, minute ventilation, breathing rate, hypoxic ventilatory response, maximal voluntary ventilation, ventilatory reserve (at oxygen saturation?=?70%) and two indices of ventilatory efficiency were measured. Everest and K2 summits were reached 29 and 61 days, respectively, after the last measurement. Five climbers summited without oxygen, the other six did not, or succeeded with oxygen (two climbers). At sea level, all data were similar. At 5,200 m, the five summiters without oxygen showed lower resting minute ventilation, breathing rate and ventilatory response to hypoxia, and higher ventilatory reserve and ventilatory efficiency, compared to the other climbers.Thus, the more successful climbers had smaller responses to hypoxia during acclimatisation to 5,200 m, but, as a result, had greater available reserve for the summit. A less sensitive hypoxic response and a greater ventilatory efficiency might increase ventilatory reserve and allow sustainable ventilation in the extreme hypoxia at the summit.